3.9.34 \(\int (c (d \sin (e+f x))^p)^n (a+b \sin (e+f x)) \, dx\) [834]

Optimal. Leaf size=163 \[ \frac {a \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1+n p);\frac {1}{2} (3+n p);\sin ^2(e+f x)\right ) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (1+n p) \sqrt {\cos ^2(e+f x)}}+\frac {b \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (2+n p);\frac {1}{2} (4+n p);\sin ^2(e+f x)\right ) \sin ^2(e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (2+n p) \sqrt {\cos ^2(e+f x)}} \]

[Out]

a*cos(f*x+e)*hypergeom([1/2, 1/2*n*p+1/2],[1/2*n*p+3/2],sin(f*x+e)^2)*sin(f*x+e)*(c*(d*sin(f*x+e))^p)^n/f/(n*p
+1)/(cos(f*x+e)^2)^(1/2)+b*cos(f*x+e)*hypergeom([1/2, 1/2*n*p+1],[1/2*n*p+2],sin(f*x+e)^2)*sin(f*x+e)^2*(c*(d*
sin(f*x+e))^p)^n/f/(n*p+2)/(cos(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2905, 2827, 2722} \begin {gather*} \frac {a \sin (e+f x) \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (n p+1);\frac {1}{2} (n p+3);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+1) \sqrt {\cos ^2(e+f x)}}+\frac {b \sin ^2(e+f x) \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (n p+2);\frac {1}{2} (n p+4);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{f (n p+2) \sqrt {\cos ^2(e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*(d*Sin[e + f*x])^p)^n*(a + b*Sin[e + f*x]),x]

[Out]

(a*Cos[e + f*x]*Hypergeometric2F1[1/2, (1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x]*(c*(d*Sin[e + f*
x])^p)^n)/(f*(1 + n*p)*Sqrt[Cos[e + f*x]^2]) + (b*Cos[e + f*x]*Hypergeometric2F1[1/2, (2 + n*p)/2, (4 + n*p)/2
, Sin[e + f*x]^2]*Sin[e + f*x]^2*(c*(d*Sin[e + f*x])^p)^n)/(f*(2 + n*p)*Sqrt[Cos[e + f*x]^2])

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2905

Int[((c_.)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
 :> Dist[c^IntPart[n]*((c*(d*Sin[e + f*x])^p)^FracPart[n]/(d*Sin[e + f*x])^(p*FracPart[n])), Int[(a + b*Sin[e
+ f*x])^m*(d*Sin[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \left (c (d \sin (e+f x))^p\right )^n (a+b \sin (e+f x)) \, dx &=\left ((d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} (a+b \sin (e+f x)) \, dx\\ &=\left (a (d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} \, dx+\frac {\left (b (d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{1+n p} \, dx}{d}\\ &=\frac {a \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1+n p);\frac {1}{2} (3+n p);\sin ^2(e+f x)\right ) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (1+n p) \sqrt {\cos ^2(e+f x)}}+\frac {b \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (2+n p);\frac {1}{2} (4+n p);\sin ^2(e+f x)\right ) \sin ^2(e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (2+n p) \sqrt {\cos ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 129, normalized size = 0.79 \begin {gather*} \frac {\sqrt {\cos ^2(e+f x)} \left (c (d \sin (e+f x))^p\right )^n \left (a (2+n p) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1+n p);\frac {1}{2} (3+n p);\sin ^2(e+f x)\right )+b (1+n p) \, _2F_1\left (\frac {1}{2},1+\frac {n p}{2};2+\frac {n p}{2};\sin ^2(e+f x)\right ) \sin (e+f x)\right ) \tan (e+f x)}{f (1+n p) (2+n p)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*(d*Sin[e + f*x])^p)^n*(a + b*Sin[e + f*x]),x]

[Out]

(Sqrt[Cos[e + f*x]^2]*(c*(d*Sin[e + f*x])^p)^n*(a*(2 + n*p)*Hypergeometric2F1[1/2, (1 + n*p)/2, (3 + n*p)/2, S
in[e + f*x]^2] + b*(1 + n*p)*Hypergeometric2F1[1/2, 1 + (n*p)/2, 2 + (n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x])*Ta
n[e + f*x])/(f*(1 + n*p)*(2 + n*p))

________________________________________________________________________________________

Maple [F]
time = 0.11, size = 0, normalized size = 0.00 \[\int \left (c \left (d \sin \left (f x +e \right )\right )^{p}\right )^{n} \left (a +b \sin \left (f x +e \right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(d*sin(f*x+e))^p)^n*(a+b*sin(f*x+e)),x)

[Out]

int((c*(d*sin(f*x+e))^p)^n*(a+b*sin(f*x+e)),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n*(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((b*sin(f*x + e) + a)*((d*sin(f*x + e))^p*c)^n, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n*(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

integral((b*sin(f*x + e) + a)*((d*sin(f*x + e))^p*c)^n, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (c \left (d \sin {\left (e + f x \right )}\right )^{p}\right )^{n} \left (a + b \sin {\left (e + f x \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))**p)**n*(a+b*sin(f*x+e)),x)

[Out]

Integral((c*(d*sin(e + f*x))**p)**n*(a + b*sin(e + f*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n*(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((b*sin(f*x + e) + a)*((d*sin(f*x + e))^p*c)^n, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (c\,{\left (d\,\sin \left (e+f\,x\right )\right )}^p\right )}^n\,\left (a+b\,\sin \left (e+f\,x\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(d*sin(e + f*x))^p)^n*(a + b*sin(e + f*x)),x)

[Out]

int((c*(d*sin(e + f*x))^p)^n*(a + b*sin(e + f*x)), x)

________________________________________________________________________________________